比较正规的买球软件新闻

News

用PCA还是LDA?特征抽取经典算法大PK:十大正规买球APP推荐

2022-11-21 21:42:01
浏览次数:
返回列表
本文摘要:在之前的格物汇文章中,我们讲解了特征提取的经典算法——主成分分析(PCA),理解了PCA算法实质上是展开了一次坐标轴转动,尽量让数据同构在新的坐标轴方向上的方差尽量大,并且让原数据与新的同构的数据在距离的变化上尽量小。

十大正规买球APP推荐

在之前的格物汇文章中,我们讲解了特征提取的经典算法——主成分分析(PCA),理解了PCA算法实质上是展开了一次坐标轴转动,尽量让数据同构在新的坐标轴方向上的方差尽量大,并且让原数据与新的同构的数据在距离的变化上尽量小。方差较小的方向代表数据所含的信息量较小,建议保有。方差较小的方向代表数据所含的信息量较较少,建议抛弃。

今天我们就来看一下PCA的明确应用于案例和特征同构的另一种方法:线性判别分析(LDA)。PCA案例在机器学习中,所用于的数据往往维数相当大,我们必须用于降维的方法来凸显信息含量较小的数据,PCA就是一个很好的降维方法。

下面我们来看一个明确的应用于案例,为了非常简单起见,我们用于一个较小的数据集来展出:显而易见,我们数据有6维,维数虽然不是很多但不一定代表数据不可以降维。我们用于sklearn中的PCA算法数值数据集获得如下的结果:我们可以看见经过PCA降维后仍然分解了新的6个维度,但是数据同构在每一个维度上的方差大小不一样。我们不会对每一个维度上的方差展开归一化,每一个维度上的方差量我们称作可说明的方差量(ExplainedVariance)。


本文关键词:比较正规的买球软件,十大正规买球APP推荐,正规买球app十佳排行

本文来源:比较正规的买球软件-www.guquan0551.com

搜索